LOWER BOUND ON LATENCY FOR VLIW ASIP DATAPATHS *

Margarida F. Jacome and Gustavo de Veciana
Department of Electrical and Computer Engineering
University of Texas, Austin, TX 78712
Tel: (512) 471-2051 Fax: (512) 471-5532
{jacome,gustava@ece.utexas.edu

Abstract tiplier M1 and ALU Al share register file RF1. By doing so, one

can in principle avoid delays incurred in moving the resulndfto
Traditional lower bound estimates on latency for dataflow graphs a new register file beforal can execute. The primary contribution
assume no data transfer delays. While such approaches can gerof this paper is the development of a latency bound which directly
erate tight lower bounds for datapaths with a centralized register accounts for such data transfer delays. Since for datapaths with dis-
file, the results may be uninformative for datapaths with distributed tributed register files the delays associated with such transfers can
register file structures that are characteristic of VLIW ASIPs. In be significant, the availability of tight lower bounds is critical in the
this paper we propose a latency bound that accounts for such dataontext of VLIW ASIPs.

transfer delays. The novelty of our approach lies in constructing
* memory
bus capacity=2

the “window dependency graph” and bounds associated with the
RF1 |RF2| |RF3| |RF4| |RF5|

problem which capture delay penalties due to operation serializa-
tion and/or data moves among distributed register files. Through a ™11
set of benchmark examples, we show that the bound is competitive

with state-of-the-art approaches. Moreover, our experiments show |'/0 |I/O |I/O |VO |I/O |l/0
that the approach can aid an iterative improvement algorithm in de- AH M;LlT Mll\JIILZT MGET MULT A;l;
termining good functional unit assignments — a key step in code M4

neration for VLIW ASIPs.
generation fo SIPs Figure 1: Segment of DFG and VLIW ASIP datapath.

1 Introduction In order to avoid delays due to data transfers, one might seek a
. binding of DFG activities to datapath functional resources, in which
Lower bound estimates on latency for Data Flow Graphs (DFGS) shared(result/operand) data objects reside in the same register files.
executing on datapaths have been extensively investigated, see e.gHowever, in doing so, one may bind two activities, that could have
[11, 6, 10]. High-level synthesis tools have traditionally used these peen executed concurrently, to the same resource resultinggin a
lower bound estimates to identify and prune inferior designs during rialization of the operations. For example, to avoid data moves
design space exploration. While some of the bounding approachesyetween register files, one may bind both andm2 to M1, so that
give tight bounds when applied to datapaths witteatralized reg- their results are placed in RF1 from whialh draws its inputs. By
ister file, they may be uninformative when applied to datapaths doing so, a serialization penalty will be incurred simee andm2
with distributedregister file structures, see e.g., Fig.1. Since the can no longer be executed concurrently. Thus, one can view the
datapaths of Very Large Instruction Word (VLIW) Application- pinding task as a tradeoff between 1) delays incurred from having
Specific Instruction-Set Processors (ASIPs) typically exhibit such o move data objects across distributed register files, and 2) delays
distributed storage structures [8, 7], there is a need to develop boundgcurred from needlessly serializing operations. Fig.2 exhibits two
that can be_ |nformat|v_e in this context. _ These b_ou_nds can in turn pindings for our example — on the left a binding attempting to avoid
provide guidance during code generation for this important class moves and, on the right, a binding avoiding serialization. Note that,

of embedded processors —in particular, as discussed in the sequefn, this simple example, both bindings lead to the same latency, but
during the functional unit binding (assignment) phase of code gen- jn general this will not be the case.

eration.

In this paper, we propose an approach to lower bounding the binding binding
execution latency of a DFG, for given binding of the DFG to BMmy=Bm2)=M1B@)=AL BMm)= MZ;B(_mZ) =M1
a datapath, which considers the impact of distributed register file B @h=al
structures on latency. In particular, we will focus on DFGs corre- w 1 ™) @ 1
sponding tasingle basic blocksvithin a loop body, since these are f
typically the time critical segments for the embedded applications 2 @] / 2
and are likely to benefit the most from using VLIW ASIPs [8, 7]. 3

In our DFG examples, we will use the convention of naming serialization required |
activities that require multiplication operations by ALU opera- data transfer penalty
tions bya and a bus use bly, see e.g., Figs.1 and 2. The key issue) o
underlying our work is as follows: when two activitisarea data Figure 2: Serialization versus data transfers.

object, asnl andal share 1]i] in Fig.1, itis of interest to bind them

to functional resources thaharecommon register files — e.g., mul- A second contribution of this paper is to develop a model, the

window dependency graptapable of capturing chains of increased
*This work is supported by a National Science Foundation NSF CAREER Award execution delays caused by such operation serializations. This model

MIP-9624321 and by Grant ATP-003658-088 of the Texas Higher Education Coordi- proves to be useful in assisting incremental Changes to bindings

nating Board. which tradeoff the delays resulting from data moves and opera-

0-7803-5832-5/99/ $10.00 © 1999 IEEE 261

tion serialization We arguethatthe proposedvindow dependenc
grapghcanbeof useduringcodegeneratiorfor VLIW ASIPs.

The paperis structuredasfollows. Section2 formally defines
theproblemto beaddressedSectior3 presentsheproposedower-
boundon executionlateng. Section4 discussesiow theinforma-
tion providedby theproposedowerboundingmethodmaybeused
in exploring tradeofs during codegeneration. Section5 discusses
relatedwork and presentdbenchmarkexamples. Conclusionsare
givenin §6.

2 Dataflow graphs, datapaths and bindings

A DFG will be modeledby a DAG, G(A,E), wherethe nodesA
represenfctivities i.e., operationgo be carriedout on datapath
resourcese.g.,addsandmaoves, andthe edgesE C A x A repre-
sentdataobjectsthatare“produced”’and“consumed’y actvities
during the flow of execution. Without loss of generality we as-
sumethat an actiity canconsumeat mosttwo dataobjects,i.e.,
the in-degree of ary nodeis at most2. We focus on codeseg-
mentscorrespondingo a single basicblock within a loop body
thusthe DFG shavn in Fig.1lincludesdataobjectlabelswith iter-
ationindices,e.qg.,r1][i],r2[i]. As discussedbelow, the DFG model
will alsoincludemove (i.e., datatransfer)actvities, requiredfor a
givenbindingof functionalactiities to datapathresources.

Let R denotethe setof datapathresourcesThesemayinclude
ALUs, multipliersandotherfunctionalunits,aswell asbuses.For
eachresource € R, we let ¢(r) € Z* denotethe capacityof that
resourcee.g.,an ALU would have a capacityof 1, signifying that
it canperform1 operationper step,whereasa busresourcemight
have a capacity?, signifying thatit canperform2 concurrentata
transferst For simplicity we will assumehatall actiities take a
unit stepto execute,but the approactcanbe extendedto multicy-
cle and/orpipelinedfunctional units. The datapaths alsospeci-
fied in termsof its (distributed)registerfiles, their connectiity to
functionalresourcesnd,for simplicity, a sharecbuswith a given
capacityseee.g.,Fig.1.

Weassumehatfunctionalactvities of theDFG have beerbound
to datapathresourcesthat is, eachactvity a € A is boundto a
resourceB(a) € R which is capableof carrying out that activity.
Given sucha binding and the registerfile connectiity, we iden-
tify dataobjectmovesthatwill needto take placebetweenoper
ations,andexplicitly includenodesin the DFG correspondingo
suchmoves. Move operationsareboundto the datapatts bus. For
example,if B(ml) = M1 andp(m2) = M2 thenanadditionalnode
would beinsertecbetweerm?2 anda2 to capturethedelayto move
theresultof m2 in registerfile RF2to registerfile RF1,seeFigs.1
and2.

3 Lower bound on latency

Recallthatour first goalis to determinea lower boundon the ex-
ecutionlatengy for a givenbinding of a DFG to a datapath.The
secondgoalis to generaténformationthat canassisttradeof ex-
plorationduring functionalunit assignmengbinding). We will do
this by first determininga global lower bound L, on the lateny
andthen,generatinga windowdependencygraph, thatwill permit
assessintheadditionaldelayson activities thatareincurreddueto
resourceand/orprecedenceonstraints.

in general,one might considerbinding activities to clustes of functional units
sharingacommonregisterfile. In this case pnewould definethe capacityof a cluster
to performa particulartype of operationwhich would dependn the numberof func-
tional unitscapableof executingtheoperationin thecluster Thisis in factthemanner
in whichthebindingis specifiedbut, to simplify notation,in this papemwe will specify
bindingsdirectly to resources.

262

3.1 Global lower bound L

Variousmethodsareavailableto determinegloballower boundson
lateny of the schedulege.g.,[11]. For concretenessye will use
the maximumof two simple bounds,however more sophisticated
approachesanbe used. We first performan, assoonaspossible,
ASAP schedulingof the DFG to determinethe minimumnumber
of stepsthat would be required. Next we sum the total number
of movesthatwereexplicitly introducedbetweenactuities in the
DFG with the total numberof primary inputs/outputghat arere-
quired,anddivide by thebuscapacityto find the minimumnumber
of stepsthatwould be requiredto performtherequireddatatrans-
fers. Thegloballower boundL is given by the maximumof these
two numbers.

3.2 Windows

We shallconstructhreetypesof windowsassociateaith theprob-
lem at hand,individual, basic andaggregatedwindows. A win-
dow, indexedby i, is specifiedby a four-tuple

w(i) = (s(i), f(i),r (i), A)

wheres(i) and f(i) arethe startandfinish stepsfor the window,

r(i) is a datapathresourceassociatedvith the window, and A; is

a setof actwities boundto r(i) which ideally would be executed
within the schedulingange[s(i), f(i)].

To establishapproximateschedulingrangesin which actwi-
ties might be scheduledve usean ASAP schedulingof the DFG
and, given the global lower boundL, performan aslate as pos-
sible (ALAP) schedulingof the DFG. Let the actiities A be in-
dexedk = 1,2,...|A|, where|A| denotesthe cardinality of setA.
For eachactiity a € A, we defineanindividual windoww! (k) =
(s (k), f1(k), B(ax), {ax}) wheres (k), f' (k) denotetheearliestand
latestpossiblestepsat which the actiity couldbe executed based
on the ASAP and ALAP schedulesand p(ax) is the resourceto
whichay is bound.Notethatsincetheschedulingangesssociated
with thesewindows weredervedbasedn ASAP/ALAP schedules
thatdisregardresourceconstraintsa schedulen with eachactiity
lies within its individual schedulingangemay not befeasible.

Individual windows provide an actity-centric point of view
on schedulingconstraints.However, theremay be multiple activ-
ities boundto the sameresourcewhich sharethe sameschedul-
ing range.Giventhe setof individual windows, we shallconstruct
areducedsetof j = 1,...nP basicwindowsdenotedby wB(j) =
(s2(i), fB(j),rB(j),A®) where A? is the largest set of actuities
boundto rB(j) with thesameindividual schedulingange
[s2(j), fB(j)]. A basicwindow thus groupsactiities sharinga
commonresourceandthe sameschedulingange.

Giventhe collectionof basicwindows, we thengenerate col-
lection of i = 1,...n* aggregated windows denotedby w(i) =
(s(i), f(i),r(i),A).? The setof aggrgatedwindows includesall
the basicwindows aswell asmegingsof one or morebasicwin-
dows, associatedvith actiities boundto the samedatapathre-
source.Only windows with schedulingangeshatahut or overlap
with eachothercanbemeigedandonly thosewith amaximalnum-
berof actvities for the givenschedulingangearekept. Thuseach
aggr@atewindow correspondso a maximalnumberof actvities
associatedvith agivenschedulingangeto be executedon acom-
monresourceAggregatedwindows, provide aresource/scheduling
rangecentricview ontheproblem by collectively capturingheag-
gregateresourcalemand®n variousrangeof steps.

Fig.3 exhibits a DFG including only additionsand multiplica-
tions, andthe varioustypesof windows that would be generated.

2Note that to keepthe notationsimplewe suppresghe superscriptA thatwould
indicatethattheseareaggreatewindows versusindividual | or basicB windows.

DEG individual basic aggregated

windows, windowsg windows
£ 10 0|8 [|E [B
o — number of
g 2 Q & I_l & J = : Fl * ﬁctivities are
=l t
t.00mEE] |BEREY
@ L=4é é E E] E % *| % *|

==t —

windows sharing contiguous or overlapping
same range ranges generate new
are joined aggregated windows

Figure 3: Exampleof individual, basic and aggreyatedwindow
construction.

For simplicity we have notlabeledwindows andactiities. Notefor
example,thatoneof theadditionactvities canbe scheduledtthe
earlieston thefirst stepor atthelateston the secondstep thushas
anindividual window with a schedulingrangeof two steps.Also
notethatthe multiplicationactities on the lasttwo stepshave the
sameindividual rangesandhenceare collapsedinto single basic
windows associateavith two activities. This bettercaptureghere-
sourcedemand®nthesdasttwo steps.Finally, windows thatakut
or overlapwith eachother generatenev meiged aggrgate win-
dows. Thusthe basicwindow associateavith the actiity having
a rangeof two stepsis meigedwith the smallerfully overlapping
individual window of the sametype. Also variouslargerwindows
containingonly multiplication actiities are generatedcapturing
the high resourcerequirementsover larger rangesof scheduling
steps. A compleity analysisfor the window generatiornprocess
canbefoundin §3.7.

3.3 Local delays - Resource constrained scheduling

Eachaggr@atedwindow i correspondso a setof actwities A; to
be executedon resourcer (i) within a rangeof schedulingsteps
[s(i), f(i)]- In the bestcase,if thereare no constraintson the ac-
tivities in awindow, they canbe executedin only 1 step,e.g.,step
s(i). However, usually dueto resource/precedencenstraintsthe
actiities associateavith the window requireseveral stepsto exe-
cute,andin somecasesnight even exceedthe upperlimit f(i)on
their schedulingrange. To capturethis effect we shall computea
lower boundon the additional numberof stepsi.e., beyondthe 1
stepcaseconsideredibove, thatary feasibleresourceconstrained
schedulewill requireto executetheactiitiesin A;. We laterdefine
this boundasthe local delay A(i), of thewindow. The boundis
obtainedby consideringhe actiities A; in isolationi.e., only con-
sideringdirectprecedenceonstraintamonghemandthecapacity
of theresourceo which they arebound.

We developourboundfor anarbitrarysetof actiities, A’ C Ain
thegraphG(A, E) whichareto beexecutedbnthesameaesource -
windows arethusa speciakcase Let G(A',E’) denotethe subgraph
of G(A,E) which includesthe actiities A’ andall edgesE’ c E
betweenactvities in A'. This inducedgraphcapturesonly direct
precedenceonstraintamongactiities in A', optimistically drop-
pingall others.Next performanASAP schedulindgor theactvities
in thesubgraph.Let| = 1,...m denotethe stepsof this schedule,
n denotethe numberof activities scheduledn stepl, andm be
the last non-emptystep. Basedon the abore ASAP scheduleat
best,the actiities in A' canbe completedin m steps. However,
sincetheseactiities areto be executedon resource with capacity
c(r), nomorethanc(r) actvities may be schedulecper step,i.e.,
n < c(r). Theboundis baseddn thefollowing obseration: afea-
sible resourceconstrainedschedulemay not executeary actiity
prior to its executionstepin the ASAP schedulefor the subgraph
andmayschedulet mostc(r) actiities perstep.Alternatively, we

263

male the optimisticassumptiorthat oncean activity on stepl of

the subgrapts ASAP schedulecompletesexecution,any actiity

on stepl + 1 canbe scheduledor execution. By relaxing con-
straintsamongthe actvities in A’ anddroppingconstrainteamong
A andtherestof the DAG we canobtainthefollowing local bound
on therelative numberof stepsneededo executethe actiwities in

A

Lemma 3.1 Suppos&)’ C A is a nonemptysetof activitiesbound
to a resouce r with capacityc(r) and let n; denotethe number
of activitiesin the stepsl = 1,...,m of the ASAPschedulefor the
subgaphG(A',E’) definedabove DefineboundA',r) by

X0 0,
XNy1 = maX{n|+x|—C(r),0}, I=1,...m,
boundA,r) %] +m-1.

c(r)

Thenbound A, r) is alower boundonthe numberof steps beyond
thefirstone thatanyfeasibleresouce constainedschedulewould
require to completeexecutionof the activitiesin A'.

The proof of thislemmais straightforvard andincludedin the
appendix. The iteration which definesthe boundcorrespondso
greedilypackingactiities, consistentvith notbeginningexecution
priortotheirassociatedubgrapSAP step,andnotexceedinghe
resources capacity

With this resultin handwe definethelocal delayfor window i
by A(i) = boundA;,r(i)). Thusthelastactvity in window i must
beexecutedon or aftersteps(i) +A(i). Thismustbethecasesince
no actity in A; canbegin executionprior to s(i) andaccordingo
Lemma3.1 at leastA(i) additionalstepsarerequired. If this ex-
ceedsf (i) thenthe precedence/resourcenstraintswill force ac-
tivities to be executedoutsidethewindow’s schedulingange,i.e.,
incur excessdelays,providing valuablelocalizedinformationon
wherea particularbindingmay beleadingto schedulingdelays.

3.4 Propagated delays - Key Lemma

Local delayscapturedelaysincurreddueto precedence/resource
constraintsvithin agivenwindow. Dueto dependenciemongac-
tivities in differentwindows, additionaldelaysmay be propagated
from onewindow to another Without lossof generalityconsider
two aggr@atewindows, indexed by 1 and2. We shall definede-
pendencieamongwindows asfollows.

Definition 3.1 We say that Window 2 dependson Window 1 if
amongWndow 2’s activities, Ay, there are activitieswith direct
data dependenciefom activities A; in Window 1. More specif-
ically let Py » x Cy 2 := (A1 x A2) NE be the setof edgeson the
DFG from activitiesin Window 1 to activitiesin Window 2, thus
Window2 depend®nWndow 1 if Py 5 x Cy 5 # 0.

We call P> andC, » the setof producerandconsumemctivities
associatedvith this dependenc relation. Note that dependenc
is a directedrelationship,i.e., in the abore definition, Window 2
depend®nWindow 1. In thesequele will usethefollowing no-
tation P, := {b € A1|(b,a) € E} to denoteproducersn Window 1
for anactvity aandCy, := {a € Ay|(b,a) € E} to denoteconsumers
in Window 2 for actiity b. Also we definel, asthesetof actvities
onfirst stepof ASAP scheduldor subgraphG(Ay, E') inducedby
theactiitiesin Window 2.

We let 5(i) denotealower boundon the additionaldelayprop-
agatedto an aggrgatewindov w(i) from otherwindows. Thus,
for a given &(i), we canguaranteghat ary feasibleschedulefor
the DFG will have an actvity in A; scheduledon or after step
s(i) +A(i) 4+ 8(i), i.e., afterthefirst schedulingstepfor thewindow

plusits local andpropagatedielays.Our goalis to systematically
find suchincrementabounds shaving wherecombinationf re-
sourceandprecedenceonstraintarelikely to leadto propagation
of delaysacrosswindows, which in turn will increasehe lateny
of theschedule The algorithmproposecelow is basedon recog-
nizing two waysin which the actvities in Window 1 canfurther
delaythelastactiity in Window 2. Thefirst is thatthereis anon-
emptysetof actiitiesin Window 2 thatcanonly bescheduledfter
completionof thelastactvity in P, ». Theseconds thatdepending
on the minimumnumberof producergequiredby the actiitiesin
Lo of Window 2, the starttime for executionof the actiities Ay
may needto bedelayed.For a detaileddiscussiorof the proposed
algorithmseethe proof of Lemma3.2in the appendix.Below we
presenta concreteexampleanddiscussiorthat shouldclarify the
generaidea.

propagated-delayl , 2)
initialize Py »,Pa,Cp andL,
if (PLo=A1) /* computeboundon last producerstep*/
last-producestep=s(1) + A(1) 4+ 8(1);
elsestart-step= mina, {s' (k)|ax € Py 2};
last-producestep= start-stept-boundPy»,r(1));
/* computeboundon last consumestep*/
if (c(r(1)) =1andVae Ly,|Pal =2)
last-consumestep= max{s(1) + 2,5(2)} + A(2);
elselast-consumestep= s(2) + A(2) + 8(2);
[* take theworst of thetwo */
num-consumers-fdast-producet= miny{|Cy| | b € Py 5};
delay= [num-consumers-fdast-producefc(r(2))];
last-consumestep=
max{last-producestep+ delay, last-consumestep;
/* computepairwisepropagateddelayfor Window2 from 1 */
A(1,2) = last-consumestep— [s(2) +A(2)];
[* updateworst casepropagateddelayfor Window2 */
5(2) = max{3(2),A(1,2)};

Lemma 3.2 Giventwo aggregatewindows Wndows1 and2, with
associatedocal andcurrentworstcasepropagateddelaysh (1), &(1)
and A(2),06(2) respectivelysud that Window 2 dependn Win-
dow 1, then the algorithm propagated-delayabove computesa
(possiblytighter) updatedworst case propagated delay &(2) for
Wndow2, anda pairwisepropagateddelay/A(1,2), i.e., the prop-
agateddelayresultingfromWndow 1.

Fig.4 shavs two windows, 1 and 2, suchthat Window 2 de-
pendson Window 1. For this example,the dependenc between
two windows canbe shavn to furtherdelaythe executionof activ-
itiesin Window 2 andthusincreaseshelowerbound,3(2), onthe
numberof additionalstepsrequiredto executethe actiities A in
Window 2. Basedon their local andcurrentworstcasepropagated
delays,our algorithm computesa new propagatedielay 6(2) for
Window 23 The examplein the Fig.4 capturesone of the cases
consideredn our algorithm. In particular thatin which all of the
actitiesin A thatcouldhave beenscheduleansteps(2) (i.e.,ac-
tivity a4), accordingo the ASAP scheduledepencdntwo produc-
ersin Window 1. Sincethecapacityc(1) of theresourceassociated
with Window 1is only 1, thisdelaysthe beginningof executionfor
actiities in Window 2, causingits lastconsumetto be scheduled
on Step4. Now, sincethisexceedss(1) + A(1) = 3, thedependenc
of Window 2 onWindow 1 causesheworstcasepropagatedelay
for Window 2 to becomel.

We notethatit is possibleto obtainmoreaggressie estimates
for propagatedielayshowvever we have foundthe above to be ad-
equatesofar.

3As discussedn the sequelwe will initially setall worstcasepropagatedielays
to 0.

264

Dependency between
two aggregated windows.

A schedule accounting
for precedence constraints
of activities in the windows.

Window 1
. |
producers—]/@)\\\ Window 2 q 1 %
P \(D\ \ S
1,2 @4t ! Q. 2 g
o] ¢ [o\®] =%
consumers/ % L=4 @
2
Window 1 Window 2/[g(2) =2
s A i
C((l))_:l (@) A(1,2)=1 /| e@=1 18
9]
s | (o [[l -
= [E
O |O| e ®
Q@ [52=1._|1=4 3

A7l .3} B ={a. &) L1={ay
last-consumer-step = max [1+2, 2] + 2-1=4
propagated delay = max [0, 4 - [2+1]] =1

Figure4: Window dependencieandpropagatedielays.

3.5 Construction of the Window Dependency Graph

LetW = {1,...n"} beanindex setfor theaggrgatedwindows as-
sociatedwith the problem.We definea windowdependencgraph
(WDG), G(W, D), with n* nodesepresentingggreatedwindows,
andincludingdirectedarc'sD C W x W betweemodes(aggrgate
windows) thatdependbn oneanotherThatis, (i, j) € D if window
j dependnwindow i. However, to avoid cycles,not all depen-
denciesj.e., arcs,areincludedin the graph. The following rule is
usedto pruneedges.

Pruning Rule: Prune(i, j) € D if no produceractivity canbe ex-
ecutedon thefirst steps(i) and/orlaststepof window i or if
noconsumeactiity canbeexecutedon thefirst steps(j) of
window j. Thatis, eithers(i) < mina {s (k)|ax € P\, } and/or
f(i) > mavg, { ' (k)& € Py } and/ors(j) < ming, {8 (K)|a €
Gt wheres (k) is the schedulingstepfor actity a, € A
in the ASAP schedule.

Theintuition underlyingthisruleis thatthedependenc(arc(i, j))
shouldonly be retainedif, amongall aggrgatewindows contain-
ing thesamesetof producemctiities B, j, window i hasthelargest
lower limit on its schedulingrange,i.e., s(i). Indeed,dependen-
ciesfrom aggrgatewindows startingearliercanbe easilyshavn
to resultin the sameor smallerworstcasepropagatedielays.thus
remaving suchdependenciesill notcompromiseurlower bound
onlatengy. Note,however, thatour rule mayactuallyremose more
dependenciethan those associatedvith aggreate windows in-
cludingactvities B j but startingthe latest.Indeed,in somecases
anaggregatewindow includinga specificsetof produceractvities
P,j maynotincludeaproducerctiity thatcanbeexecutedonthe
first stepof thewindow. A similar intuition accompaniethe case
in lookingatconsumerin thedependentvindow j. While in some
caseghis pruningmaywealentheresultingboundsjt allows usto
easilyestablishthatthe prunedWDG is agyclic, seethe appendix
for aproof. Thisin turn significantlyreduceghe compleity of our
proposedalgorithm.

Theorem 3.1 A window dependencygraph G(W,D) prunedac-
cordingto theaboverule is acyclic.

3.6 Algorithm to compute propagated delays

Givenanagyclic window dependencgraphG(W, D), we next dis-
cusshow to computethe worst casepropagatedielayfor all win-
dowsin thegraph.Wefirstsetd(j) = Ofor all j € W. Then,starting
from thesourcenodegaggr@atedwindows) in thewindow depen-
deny graph,we iteratively determinethe worst casepropagated
delay of eachnode j, &(j), not yet consideredbut whoseparent
nodes'worstcasepropagatedielaysareknown, via

Vi s.t. (i,j) €D : propagated-delayi, j).
Thepropagatedelayfor eachsourcenodeis assumedo be0 upon
initialization.

Theorem 3.2 Thisiterativealgorithmreturnsa setof propagation
delays{d(i)|i € W} for windowsin thegraph.

The proof of thistheoremfollows directly from Lemma3.2.

Thefinal lowerbound,L*, ontheexecutionlateny of theDFG,
is given by the worst caselower boundover all windows in the
WDG, i.e.,

L* = max{s(i) +A(i) + 8(1) i € W}.

Thecomplity analysisof thealgorithmfor computingpropagated
delaysandL* canbefoundin thenext section.

3.7 Complexity analysis

In whatfollows we briefly discusghe asymptotidime complexity
of the algorithmsfor creatingthe WDG andcomputingL* for the
WDG. The setof individual windows is createdusing ASAP and
ALAP schedulingalgorithms,andthustakes O(]A| + |E|). Since
themaximumnumberof edgesncidenton eachactvity (i.e.,num-
ber of operands)s two, |[E| < 2x |A|, and thusthe generationof
individual windows takesO(|A|).

Next we discussthe generatiorof aggrgatewindows* Note
that the maximumnumberof aggrgatewindows per resources
givenby Y- (L —i)(i+ 1) ~ L%, Indeedfor eachresourcepne
canhave at mostL windows of size 1, L — 1 windows of size 2,
down to 1 window of sizeL. Thesimplealgorithmcurrentlyused
to createthe aggreatewindows is asfollows. For eachresource,
we createa list of L2 empty candidateaggrejatedwindows, with
correspondinganges,orderedby starttime. Eachcandidateag-
gregatewindow hasa setof steps,from startsteps to finish step
f. Eachsuchstepis initialized asunused,and a window’s local
counterof unusedstepsis initialized to the numberof stepscon-
tainedin its range. In the first phaseof the algorithm, for each
individual window, we searchor all candidateaggreyatewindows
(definedfor thecorrespondingesourcejhatcontainits scheduling
range.Wheneer oneis found, the individual window's actwity is
insertedin the aggrgatewindow, andall stepsthatthe individual
window shareswith the candidateaggrgatewindow thatarecur-
rently unusedaremarked asused.The counterof unusedayersfor
the candidateaggrgyatewindow is thenupdated. This first phase
takesO(]A|L?), sinceeachof the O(|A|) individual windows needs
to iteratethoughthe O(L3) candidateaggreyatewindows of its cor-
respondingesourceand updateunusedayersat a costof O(L).
In the secondphaseof the algorithm,eachresultingcandidateag-
gregatewindow is validated,by checkingif its counterof unused

4For mostpracticalcasesye expectthatthe intermediatestepof generatingasic
windowswill payoff, i.e.,improve theoverall efficiengy of thealgorithm,sinceit may
significantly reducethe numberof windows that needto be individually considered
in the expensve meming stepthatfollows. However, for the purposeof determining
asymptoticcompleity sinceonewould still needto considerfA| basicwindows, the
basicwindow generatiorstepwill beomittedin thisanalysis.

265

layersis zero. If not, the candidateaggr@atewindow is invalid,
andis deletedfrom the orderedlist of aggrgatewindows for the
resource.lf the candidateaggrgatewindow is valid, we perform
the ASAP schedulefor the inducedsubgraphassociateavith the
actwities in the window, and computethe local delayA(i) of the
window - the compleity of this stepis O(|A|). The secondohase
of the algorithmhasa compleity of O(|R|L3|A|) sinceO(|R|L®)
tentatie aggreatewindows mustbe considere@d. Thefinal num-
berof aggrgatewindows is O(|R|L3).

Next we considetthealgorithmfor creatingthe prunedWDG's
edges,and simultaneouslycomputingthe propagatedielaysbe-
tweenall aggr@atewindows. The worst casepropagatedielays
for eachwindow arefirst setto 0. We thensequentiallyconsider
theaggregatewindows of all resourcesprderedby starttime. Sup-
poseaggrgatewindow | is selectedfor considerationwe shall
call it the pivot. Next we selecta candidateproducerwindow
for the pivot. (Dueto the pruningrule, only aggr@atewindows
whosestarttime is lessthanthatof the pivot canbe selected. Next
oneverifiesif the pruning condition holds (which takes O(]A|2))
in which casethe edgeis not constructedetweenthe aggrgated
windows andthe next candidateproducerwindow is considered.
Otherwise,an edge(i, j) is created,and the algorithm for com-
puting the pairwisepropagatedlelay A(i, j) describedn §3.4, is
executed andthe valueis associateavith edge(i, j).6 If the new
pairwise propagatedielay is greaterthan the currentworst case
propagatedielay d(j) of the pivot window, the valueis updated.
The algorithmto updateworst casepropagatedielay of the pivot
for a given candidateproducertakes O(|A|%). Thusthe computa-
tion of thebound(andsimultaneougieneratiorof theedgesn the
WDG), is doneby applyingthe previous stepto pairsof aggreate
windows, andtakesO(|R|?L%|AJ?). In summarythe generatiorof
the WDG andthe computatiorof L* have anasymptoticcomple-
ity of O(|R|°L8|A?).

For VLIW datapathsvith multiple functionalunits(intendedo
explore parallelismin the DFG), L is typically muchsmallerthan
|Al. Moreover, thenumberof aggrgatedwindows thatneedgo be
consideredn thevariousstepsof thealgorithmhasin practicebeen
(andis expectedo be) muchsmallerthan|R|L3.” Thus,we expect
theabove theoreticalsymptoticcompleity to bevery pessimistic
for the classof problemsof interest. For all the DSPbenchmarks
consideredn §5, the total executiontime hasnever exceeded).5
seconanUltraSparcl.

4 Window dependency graph and tradeoff exploration

In thissectionwe discussa simplebindingheuristicwhichtakesad-
vantageof thewindow dependencgraph(WDG) to exploretrade-
offs betweenl) reducingdatatransfersand2) avoiding operation
serializationsee§1. The experimentaresultsin §5 exhibit the ef-
fectivenes®of this heuristichasedbnthe WDG, whichin turncould
beusedby aniterative improvementbindingalgorithm.

As a startingpointin the generatiorof our exampleswe con-
sideredan initial binding that reducedmoves betweenoperations
on the longestpathsof the DFG. The ideais to bind actiities on
thosepathssuchthat their shareddataobjectsremainon register
files sharedby the assignedunctionalunits. The remainingbind-
ing of operationsto functional units was performedto minimize
serializatiorof concurrenbperationsThis processvasdoneman-
ually.

5Notethatthis secondstepof thegeneratiorf aggrgatewindowscan(andshould)
beactuallyintegratedin thefinal phaseof thealgorithm,but for clarity of theexplana-
tion, we consideiit hereindependently

8Note thatthe computatiorof A(i,) for the WDG edgess truly not requiredfor
computingL*. However, thesevaluesareinformative if onewantsto reasonabout
bindingmodificationdikely to improve lateny (seediscussioron §4 and§5).

7In practice |t hasbeenconsistentlysub-quadratiin L.

Next, basedon the window dependencgraph,we determined
our lower boundL* on lateng. If L* =L, andL is in factequal
to the last stepof the ASAP schedulefor G(AE) (see§3), then
the currentbindingis optimaFf. Otherwiseit may be desirableto
modifythe functionalunit assignmento try to lower executionla-
teng. Recallthateachaggreatewindow i hasa schedulingange
[s(i), f(i)], alocal delayA(i), anda worst casepropagatedielay
o(i) suchthats(i)+ A(i) + o(i) is a lower boundon the last step
actwities in the window will be scheduled.We shall refer to the
differencebetweerthis boundand f (i) asthewindow’s excessle-
lay. Thekey insightin selectingwhich actwvity bindingsto modify
is to 1) find windows with high positiveexcessdelaysthat 2) lie
on “critical paths”of the WDG. Recallthata window represents
setof activities boundto a commonresourcehat have to be (se-
rially) executedover a given schedulingange. A window with a
large positive excessdelayis onefor which serializationdueto re-
sourceconstraintsand/orpairwisepropagatedielaysfrom parent
windows, A, leadto delaysbeyond this schedulingrange. Thus,
in orderto reducelateny it may be worthwhile to reconsidethe
binding of actvities in suchwindows. Note, havever, thatnot all
suchwindows areproblematic.Indeed,only windows on the “crit-
ical paths”of the WDG, i.e., thoseleadingto anincreasedverall
lateng, eitherdirectly or througha sequencef pairwisepropa-
gateddelays,needto be considered.We identify “critical paths”
on the WDG by backtrackingfrom sink nodes(windows) in the
WDG whosefinal lower boundon executionexceedsthe global
lower boundL, andtraversethe graphup to parentwindows with
non-zeroexcesselays.

Still, not all windows with positive excessdelay andlying on
the WDG'’s critical paths,would be candidatedfor iterative im-
provementon binding. Two simplerulescanbe usedto determine
windows for which a given binding is likely to be optimal. First,
awindow with no additionaldelayspropagatedrom its producer
windows and with an excessdelay < 1 neednot have the bind-
ing of its actwities reconsideredindeed,asshavn in the example
in Fig.2, the benefitsof remaving serializationin suchcaseswill
be canceledy the additionaldelayincurredby requiredmove op-
erations. Similarly, a window with a non-zeropropagatedielay
from its producemwindows andan excessdelay < 2 neednot have
the binding of its actiities reconsidered.It follows thata WDG
thatonly containssuchwindows is unlikely to have its lateng im-
proved by further modifying the binding. Thesesimple heuristic
rulesprovedto be effective whenappliedto the benchmarkén §5.

This concludesour brief qualitative discussion.As mentioned
above, the purposeof this sectionis notto proposeanalgorithmto
performthis comple trade-of exploration,but ratherto shav that
the information containedin the WDG canbe helpful to suchan
explorationprocess.

5 Related work and benchmark examples

In the contet of distributedregisterfiles, if onewantsto consider
the deleteriouseffect of requireddataobjectmaveson the lateny
of aschedulepnemustexplicitly consideabindingof thedataflav
nodesto the functionalunits in the datapath. The basicproblem
formulatedandaddresseth this paperis thusdifferentfrom those
consideredn [6, 11], for they assumeo datatransferdelays.How-
ever, onecanapplythesetechniqueso the dataflav aftera binding
function hasbeendetermined.Indeed by makingeachfunctional
unit adistinctresourcaypewith capacityl, andthebusaresource
typewith aspecificcapacitythesemethodsanalsobemadebind-
ing specific. Given this, one can comparethe absolutequality of
our lower boundwith thatreportedn [6, 11]. With few exceptions

8QOptimalat our level of abstractionj.e., disregardingregisterfiles sizesandport
assignments.

266

[11] performsbetterthan[6], thuswe shallcompareour work with
animplementatiorof thealgorithmin [11].

Table1l summarize®ur results. Several benchmarldataflavs
wereboundto the datapattshavn in Fig.1. Initial andimproved
bindingswere obtainedmanually basedon the simple heuristics
discussedn §4. Columns2 and 4 of the table shav the mini-
mumachiezablelateng for centralizedandfor distributedregister
file structuresrespectiely. Differencedbetweertheseindicatethe
crudenes®f assuminga centralizedregisterfile structurewhenit
isin factdistributed. Starredentriesareknown to be optimallaten-
ciesover all possiblebindings thustheimprovementheuristicwas
effective.

Our lower boundon lateng L*, shavn in column5, wascon-
sistentlytight andfor seven of the ten benchmarksutperformed
[17].

DFG Central. | Binding | Distrib. Lower Bds
RF RFs | Ourl* | [11]

FFT Butterfly [3] 4 initial 8 8 6
imprvd. 5* 5 4

4th order Avenhous 7 initial 10 10 9
Filter [5] imprvd. 9 9 9
4th order IR 4 initial 9 9 8
Filter retimed[3] imprvd. 6* 6 5
Beamforming Filter 4 initial 8 8 7
(3 beams)[9] imprvd. 6* 6 5
AR Filter [2] 8 initial 15 13 14
imprvd 13 13 13

Tablel: Experimentaltesults.

In addition,notethat[6, 11] only generatdboundson the earli-
estpossiblesxecutiontime of individual nodesn the DFG, so, the
information on serialization(for FUs and buses)that we capture
via the WDG is not available. Sincethelateng of a schedulecan
vary significantlyfor differentbindings,particularlyfor datapaths
with distributedregisterfiles, our approacthasa significantadded
value, in thatit canprovide guidanceon how to modify binding
functionsto achieve lower latencies.

Codegeneratiorfor VLIW ASIPshasbeenaddressedxten-
sively in the literature,seee.g.,[8, 7]. Although discussinghis
work is beyondthe scopeof this paper to furtherillustratetherel-
evanceof thetrade-of informationcapturedoy the WDG, we will
briefly discusghe AVIV codegenerator[t Thiswork specifically
considergshesamerade-ofs, while deriving afunctionalunit bind-
ing/assignmenfor a givenexpressiortree.

As discussedbelav, AVIV greedilypruneshindingalternatves
basedn alocal costfunction. Givenanexpressiortree,an ASAP
scheduleof the expressiontree is performed,and nodes(opera-
tions) on the resultinglevels are sequentiallyconsideredin ary
order)from the lowestto the highestlevel. As the operationsare
consideredasearchreeis constructedrepresentingossiblebind-
ing alternatves. Heuristicallyinferior alternatvesareimmediately
pruned- basedon alocal costfunction. The costassociateavith
bindinganoperationto a functionalunit is the sumof 1) the num-
ber of requireddatatransferggiven the bindingsmadefor the an-
cestornodesof thatparticularpathof the decisiontree,and2) the
numberof operationsat the currentlevel that are assignedo the
samefunctionalunit, againconsideringhebindingsfor theances-
tor nodes.While this greedypolicy would executefasterthanour
lower boundalgorithm, it makes decisionsstrictly basedon local
information. Thus, for example,it doesnot discriminateamong
operationghathave differentmobility (i.e., schedulingvindows),
which can compromisethe overall quality of the binding. An it-
erative improvementalgorithmusingthe WDG caninsteadcreate
binding alternatvesbasedon a more“global” view of suchtrade-
offs, at the expenseof anincreasen runtime. This concludesour

discussiorof therelevanceto codegeneratiorof the tradeofs ex-
plicitly modeledn ourapproach.

6 Conclusion

We have proposecdan approacho generatingower boundson ex-
ecutionlateny for DFGson datapathsypical of VLIW ASIPsfor
a given functionalunit binding/assignmentWhile the boundwas
found to be competitive with state-of-the-artipproachesits key
adwantagdiesin capturingdelaypenaltiesddueto operationserial-
izationand/ordatamovesamongdistributedregisterfiles. In order
to estimatesuchdelays theschedulingoroblemis relaxed (decom-
posed)into a numberof simplerschedulingsub-problemsjointly
representedisingthe windov dependenc graphmodel. Our re-
sults shav that the relaxed, less computationallyexpensve, ver-
sion of the schedulingoroblemresultsin tight bounds.Moreover,
it canprovide valuableinformation/guidanceo heuristicbinding
algorithmsfor “clustered”VLIW ASIP datapathsFunctionalunit
assignment/bindings a key stepof the difficult codegeneration
problemfor VLIW ASIPs. We are currently working on devel-
oping binding algorithms,supportedby the windonv dependenc
graphmode,to addresshis problem.

References

[1] G.deMicheli. Synthesisind Optimizationof Digital Ciruits.
McGraw-Hill, Inc,1994.

[2] R.Jainet.al. Experiencavith the Adamsynthesisystem.In
Proc.of DAC, pages6—62,1989.

[3] V. Zivojnovic et.al. DSPstoneA DSPorientedbenchmark-
ing methodologyIn Proc. of ICSFAT'94, Oct. 1994.

[4] S.HannoandS. Devadas.Instructionselection resourceal-
locationandschedulingn the AVIV retagetablecodegener
ator. In Proc. of the 35thDAC, pages510-15,Junel998.

[5] E.IfeachorandB. Jervis. Digital signal processing:A prac-
tical appoad. Addison-Wesley, 1993.

[6] M. Langerin andE. Cerry. A recursve techniqudor comput-
ing lower-boundperformanceof schedules. ACM Trans.on
DesignAutomationof Electronic Systemsl (4):443-561996.

[7] C.Liem. Retagetablecompiles for embeddedore proces-
sors. Kluwer AcademicPublishers1997.

[8] P.MarwedelandGertGoossensditors.CodeGeneationfor
EmbeddedProcesscs. Kluwer AcademicPublishers1995.

[9] R.Mucci. A comparisorof efficientbeamformingalgorithms.
IEEE Trans.on SignalProcessing32(3):548-581984.

[10] M. Rim andR. Jain. Lower boundperformanceestimation
for thehigh-level synthesischedulingproblem.IEEE Trans.
on CAD of ICs and Systemsl3(4):451-581994.

[11] G. Tiruvuri andM. Chung. Estimationof lower boundsin
schedulingalgorithmsfor high-level synthesis.ACM Trans.
on DAES(TODAES) 3(2):162—-80,1998.

267

A Proof of Lemma 3.1

Themainideaunderlyingthis lemmais thatary relaxationof con-
straints.e.g.,precedencer resourceonstraintspntheoriginal re-
sourceconstrainegchedulingproblemcanonly reducethestarting
time of anactvity in the correspondingptimal schedule Hence,
considerthe subgraphG(A',E') inducedby the setof actities A',
i.e.,includingonly arcsin theoriginal graphthatarebetweeractiv-
itiesin A'. This subgraplcorrespondso a relaxationof all prece-
denceconstraintexternalto the setof actiities A’. Next we per
form anASAP schedulindor theDFGG(A',E’) andletl =1,...m
denotethe stepsin this scheduleandn; denotethe numberof ac-
tivitiesscheduleanstepl. Sincetheseactvitiesareto beexecuted
on aresourcea with capacityc(r) the abore ASAP schedulemay
notbefeasible.To obtainalower boundon necessargelaypenal-
tiesdueto theresourceconstraintsve consideranew hypothetical
resourceconstrainedgchedulingproblemwhich furtherrelaxesin-
ternalprecedenceonstraintemongheactivitiesin A’. Weassume
thatoncean activity on stepl of the subgrapts ASAP schedulés
executedall nj;1 actiities on stepl + 1 canbe schedulecn the
subsequerdtep.

This new hypotheticalproblemcanbe solved directly usinga
greedyalgorithmthatschedulesctvities assoonaspossible.Let
X denotethe numberof actiities that are eligible for execution
priorto stepl but, dueto capacityconstraintswill needo besched-
uledonstepl or later Thuson stepl thetotal numberof actvities
eligible for executionis n; + x, however only c(r) canbe sched-
uled,thusx 41 (seeEq. 1) activitieswill be postponedo the next
step.Naturallysincetheschedulestartson stepl, xo = 0. Notethat
which actvities areareactuallyscheduleadn agivenstepis irrele-
vant,sincewe canalwaysassumehatatleastoneactuallybelongs
to stepl of the ASAP scheduleandthusall activities on the next
stepwill becomeeligible for execution. Theiterative computation
in (1) finisheson stepm wherexmy.1 correspondso the numberof
actiitiesthathadto bepostponedif ary, beyondthelaststepm of
the ASAP schedulaueto resourceconstraints.

X1 = maxn+x —c(r),0}, I=1...m, (1)

boundA',r) = [%1 +m-1 ¥}

From thereon we cancomputethe additionalnumberscheduling
stepgequireco executethepostponedctiities, if ary, i.e., [%1
Finally, to obtainour boundwe subtractl sincethe boundis onthe
numberof additional stepsbeyond the first one, thatarerequired
to executethe actuities.

B Proof of Lemma 3.2

The goal of propagated-delayis to find alower boundon the last
steponwhich actvitiesin Window 2 will be executed.

We first considerlower boundson the time the last producer
actiity in Window 1 is scheduledIf A3 = Py ; then,by definition
of the local delayandworst casepropagatedielay of Window 1,
thelastactity mustbe schedulean or afterstep

last-producestep= f(1) +A(1) +5(1).

If A?# Py »> then,usingtheresultin Lemma3.1, thelastproducer
mustbescheduledn or afterstep

last-producestep= start-stept- boundPy »,r(1))

wherestart-step= ming,{S (k)| € P12} correspondso the ear
liest possiblestepon which anactiity in P, > may be scheduled.
Now, sinceat leastone consumeractiity in Window 2 depends

on the last produceractiity, the last consumeistepmuststrictly
exceedthelast-producestepcomputedabore. In factthereareat
least

num-consumers-fdast-producee= mbin{|Cb| | be Py}

consumerslependingnthelastproducer Thuswe setthe“delay”
variableequalto

delay= [num-consumers-fdast-producefc(r(2))7],

sothelastconsumestepmustexceedthelast-producestep+ de-
lay.

Next we find a lower boundfor the last stepon which an ac-
tivity in the dependenwindow 2 will be executed.Let G(Ay, E')
be the subgraphof G(A,E) which includesthe actvities A, and
all theedgesE’ C E amongtheseactivities. Supposeve perform
an ASAP scheduleor this subgraphandlet L, denotethe setof
actiities on the first stepof that schedule. Also for ary activ-
ity a € Ay, let P, denoteits produceractiities in Window 1, i.e.,
Pa={be As|(b,a) € E}.

We considertwo cases.We first testif c(r(1)) =1 andvVae
Lo, |Pa| = 2. Sinceevery actvity in L, dependsn two producer
actiities in Window 1 andthe capacityof the resourceassociated
with the producemwindow is 1, no actvity in the dependenWin-
dow 2 canbegin executionprior to steps(1) + 2 or, of course,its
own startingsteps(2). Thusthe following lower boundfollows
immediatelyfrom Lemma3.1:

last-consumestep= max{s(1) + 2,5(2)} + A(2).

Notethatdueto thepruningrule discussedh §3.5,5(1) + 1 < s(2)
thuswhenVa e Ly, |Pa| > 1 the the analogousboundto the abore
would degenerateo s(2) +A(2), i.e.,wouldleave thecurrentprop-
agatedielayof thewindow unchanged.

If the conditionfor the previous caseis untruethenwe male
the optimistic assumptiorthat actwities in Window 2 can begin
executionon the first stepof the window s(2), eventhoughthere
maybedependenciesnWindow 1. Thisgivesthefollowing bound

last-consumestep= s(2) + A(2) + (2).

Thuswe have two lower boundsfor the stepon which thelastac-
tivity in thedependentvindow is executed.
Finally, we take the maximumof thesetwo boundsj.e.,

last-consumestep=
= max{last-producestep+ delay, last-consumestep}.

The pairwisepropagatedielayassociateavith Window 2's depen-
deny onWindow 1 is thengivenby

A(1,2) = last-consumestep—[s(2) +A(2)].
The worstcasepropagatedielayassociateavith Window 2, 5(2),
is thenupdatedy takingtheworstof theold propagatedielay and
thejust computedpairwisepropagatedelay

52 = max(3(2),A(1,2)}.

C Proof of Theorem 3.1

We shallprove the theoremby contradiction.Supposehereexists
acycle in the prunedwindow dependencgraphG(W, D). With-
out loss of generalitysupposethe cycle visits nodes(windows)
1,2,3,..j andthenbackto 1. Given our pruningrule, aggrgate
Window 1 musthave a produceractvity, saya; € Py, thatcan

268

executeon the last step f (1) of the window's schedulingrange.
Thus f(1) would correspondo position(step)of a; in the ALAP
scheduleusedto definethat actiity’s individual window. Since
Window 2 containsat leastoneactiity by, thatdependn a;, in
the sameALAP schedulex, mustbe scheduledn a stepbeyond
f(1). Thusthefinal stepf(2) in the schedulingangeof Window
2 mustsatisfy f(2) > f(1) + 1. Using this sameargumentuntil
we reachWindow j we canshaw that f(j) > f(1)+ j— 1. Since
Window 1 alsodepend®n Window j, thepruningrule guarantees
that at leastone produceractiity a; € Pj; in Window j canex-
ecuteon stepf(j). Now, sincethereexists anactvity in Window
1 thatdependson aj, Window 1’s last step f (1) mustbe at least
f(j)+ 1. Clearlythisis a contradictiorsincethis would imply that
fH1)> F())+1> f(1)+].

